

Логин ОО

Всероссийская проверочная работа

по профильному учебному предмету «ФИЗИКА»

для обучающихся первых курсов по очной форме обучения по образовательным программам среднего профессионального образования на базе основного общего образования

Вариант 18831

Инструкция по выполнению работы

На выполнение работы по физике отводится 2 часа (120 минут). Работа включает в себя 21 залание.

Ответы на задания запишите в поля ответов в тексте работы. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебником, рабочими тетрадями и другими справочными материалами. Разрешается использовать линейку и непрограммируемый калькулятор.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Баллы																

Номер задания	17	18	19	20	21	Сумма баллов	Отметка за работу
Баллы							

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки				
Наименование	Обозначение	Множитель		
гига	Γ	109		
мега	M	10^{6}		
кило	К	10^{3}		
гекто	Γ	10^{2}		
санти	С	10^{-2}		
милли	M	10^{-3}		
микро	МК	10^{-6}		
нано	н	10 ⁻⁹		

Константы	
ускорение свободного падения на Земле	$g = 10 \frac{M}{c^2}$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{K}\Gamma^2}$
скорость света в вакууме	$c = 3 \cdot 10^8 \frac{M}{c}$
элементарный электрический заряд	$e = 1,6 \cdot 10^{-19} \text{ Кл}$

Плотность			
бензин	$710 \frac{\kappa \Gamma}{\text{m}^3}$	древесина (сосна)	$400 \frac{\mathrm{K}\Gamma}{\mathrm{m}^3}$
спирт	$800 \frac{\kappa \Gamma}{M^3}$	парафин	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
керосин	$800 \frac{\kappa \Gamma}{M^3}$	лёд	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
масло машинное	$900 \frac{\kappa \Gamma}{\text{m}^3}$	алюминий	$2700 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
вода	$1000 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	мрамор	$2700 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
молоко цельное	$1030 \; \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	цинк	$7100 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
вода морская	$1030 \; \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	сталь, железо	$7800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
глицерин	$1260 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	медь	$8900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
ртуть	$13\ 600\ \frac{\text{K}\Gamma}{\text{M}^3}$	свинец	$11\ 350\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$

	Удельная				
теплоёмкость воды	4200 <u>Дж</u> кг·°С	теплота парообразования воды	$2,3\cdot10^6 \frac{\mathrm{Дж}}{\mathrm{K}\Gamma}$		
теплоёмкость спирта	2400 <u>Дж</u> кг·°С	теплота парообразования спирта	9,0·10 ⁵ Дж кг		
теплоёмкость льда	2100 <u>Дж</u> кг·°С	теплота плавления свинца	2,5·10 ⁴ Дж кг		
теплоёмкость алюминия	920 <u>Дж</u> кг·°С	теплота плавления стали	7,8·10 ⁴ Дж		
теплоёмкость стали	500 <u>Дж</u> кг∙°С	теплота плавления олова	5,9·10 ⁴ Дж кг		
теплоёмкость цинка	400 <u>Дж</u> кг·°С	теплота плавления льда	3,3·10 ⁵ Дж		
теплоёмкость меди	400 <u>Дж</u> кг·°С	теплота сгорания спирта	2,9·10 ⁷ <u>Дж</u>		
теплоёмкость олова	230 <u>Дж</u> кг·°С	теплота сгорания керосина	4,6·10 ⁷ Дж		
теплоёмкость свинца	130 <u>Дж</u> кг∙°С	теплота сгорания бензина	$4,6\cdot10^7 \frac{Дж}{к\Gamma}$		
теплоёмкость бронзы	420 <u>Дж</u> кг·°С				

Температур	а плавления	Температура кипения при нормальном атмосферном давлении		
свинца	327 °C	воды	100 °C	
олова	232 °C	спирта	78 °C	
льда	0 °C			

	Удельное электрич	иеское сопротивление, $\frac{O_{M}}{N}$	—— (при 20 °C)
серебро	0,016	никелин	0,4
медь	0,017	нихром (сплав)	1,1
алюминий	0,028	фехраль	1,2
железо	0,10		

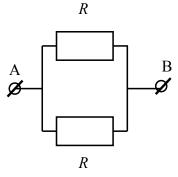
Нормальные условия: давление 10^5 Па, температура 0 °C

КОД

Установите соответствие между физическими величинами и единицами в Международной системе единиц (СИ). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

В


- А) внутренняя энергия
- Б) удельная теплота плавления
- В) количество теплоты

ЕДИНИЦЫ

- 1) джоуль (1 Дж)
- джоуль на килограмм (1 $\frac{Дж}{кг}$)
- джоуль на килограмм градус Цельсия (1 $\frac{\mu_{\rm KF}}{\mu_{\rm KF}}$)
- джоуль на градус Цельсия $(1 \frac{\mu}{2})$
- джоуль килограмм (1 Дж·кг)

- Установите соответствие между формулами для расчёта физических величин для случая протекания тока по участку цепи (см. рисунок) и названиями этих величин.

В формулах использованы обозначения: U – напряжение на участке AB цепи; R — сопротивления резисторов; t — время.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

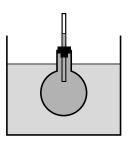
ФОРМУЛЫ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- мощность электрического тока, выделяющаяся на резисторе R
- мощность электрического тока, выделяющаяся на участке АВ цепи
- количество теплоты, выделяющееся на резисторе R
- количество теплоты, выделяющееся на участке АВ цепи

	Ответ:	
--	--------	--

КОД	


3	Высокая проникающая способность этого излучения послужила причиной его применения
	для исследования переломов костей и определения местоположения инородных тел
	(например, пули) в теле человека. В настоящее время применяют несколько методов
	диагностики с помощью этих лучей.

О какой части электромагнитного излучения идёт речь?

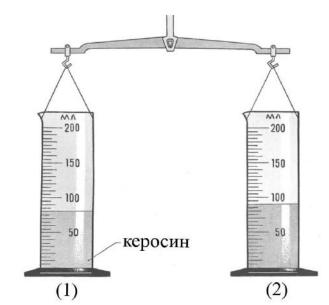
- 1) инфракрасные лучи
- 2) радиолучи
- 3) рентгеновские лучи
- 4) ультрафиолетовые лучи

Прочитайте текст и вставьте на места пропусков слова (словосочетания) из приведённого списка.

В процессе нагревания колбы с жидкостью, помещённой в сосуд с горячей водой, наблюдали повышение уровня жидкости в трубке (см. рисунок).

В процессе нагревания жидкос	ги в колбе наблюдается	я явление (A)	,
которое связано с увеличением	Б)	_ молекул. При этом м	асса жидкости
(B), a объ	м жидкости (Г)	·	

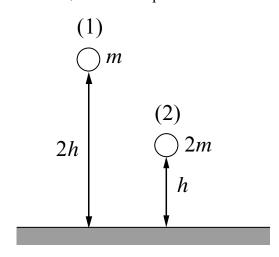
Список слов и словосочетаний:


- 1) испарение
- 2) тепловое расширение
- 3) размер
- 4) скорость теплового движения
- 5) увеличивается
- 6) уменьшается
- 7) не изменяется

Запишите в таблицу выбранные цифры под соответствующими буквами.

	Α	Б	В	Γ
Ответ:				

5

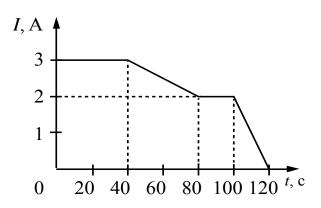

Две одинаковые мензурки с разными жидкостями уравновешены на рычажных весах. В первой мензурке находится керосин. Определите плотность жидкости во второй мензурке. Ответ округлите до десятых.

Other: $\frac{\Gamma}{cM^3}$.

6

Два шара разными массами подняты на разные высоты (см. рисунок) относительно поверхности стола. Потенциальная энергия тела 1 равна 300 Дж. Определите потенциальную энергию тела 2. Считать, что потенциальная энергия отсчитывается от уровня крышки стола.

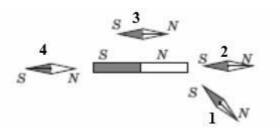
Ответ: _____ Дж.


 $\overline{7}$

Какое количество теплоты выделится при охлаждении 4 кг свинца, находящегося в твёрдом состоянии, от температуры кристаллизации до 27 °C?

Отв

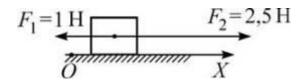
Ответ: кДж.


8 На рисунке представлен график зависимости силы электрического тока I, текущего по проводнику, от времени t.

Чему равен модуль заряда, прошедшего через поперечное сечение проводника в интервале времени от 80 до 100 с?

Ответ: Кл.

9 На горизонтальной поверхности вокруг постоянного полосового магнита расположены магнитные стрелки (см. рисунок). Для какой из стрелок (1–4) её расположение не соответствует взаимодействию с постоянным магнитом?


Ответ: _____

10 Каково зарядовое число ядра X в реакции ${}^{252}_{98}$ Cf + 4_2 He \longrightarrow X + 3 1_0 n?

Ответ: ______.

11

На покоящееся тело, находящееся на гладкой горизонтальной плоскости, начинают действовать две горизонтальные силы, лежащие на одной прямой (см. рисунок). Как изменяются со временем модуль скорости тела и модуль ускорения тела?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

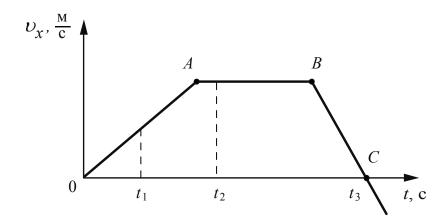
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Модуль скорости	Модуль ускорения
тела	тела

(12)

Спираль электроплитки укоротили. Как изменились её электрическое сопротивление и сила электрического тока в спирали при включении плитки в ту же электрическую сеть?

Для каждой величины определите соответствующий характер изменения:


- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

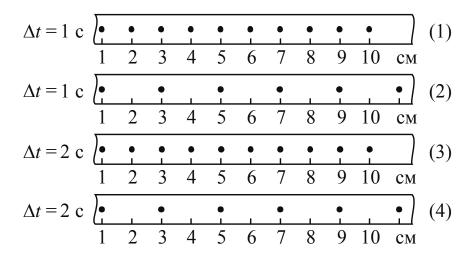
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Электрическое сопротивление спирали	Сила электрического тока в спирали

(13)

На рисунке представлен график зависимости проекции скорости v_x от времени t для тела, движущегося вдоль оси Ox.

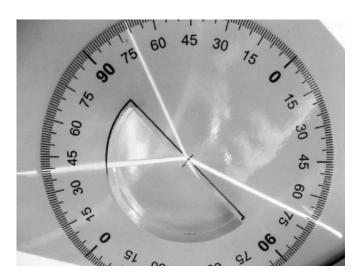
Используя данные графика, выберите из предложенного перечня $\partial \epsilon a$ верных утверждения. Укажите их номера.


- 1) Участок ОА соответствует равномерному движению тела.
- 2) Участок BC соответствует движению тела с максимальным по модулю ускорением.
- 3) В момент времени t_1 тело двигалось в направлении, противоположном направлению оси Ox.
- 4) В момент времени t_3 ускорение тела равнялось нулю.
- 5) Участок АВ соответствует равномерному движению тела.

Ответ.	
--------	--

(14)

На рисунке точками на линейках показаны положения четырёх равномерно движущихся тел, причём для тел 1 и 2 положения отмечались через каждую секунду, а для тел 3 и 4 – через каждые 2 с.


Используя текст и рисунки, выберите из предложенного перечня $\partial \epsilon a$ верных утверждения. Укажите их номера.

- 1) Средняя скорость движения тела 4 на участке от 1 до 10 см равна 1 $\frac{\text{см}}{\text{c}}$.
- 2) Средняя скорость движения тела 3 на участке от 1 до 10 см равна 1 $\frac{\text{см}}{\text{c}}$.
- 3) С наибольшей средней скоростью на участке от 1 до 10 см двигалось тело 4.
- 4) С наименьшей средней скоростью на участке от 1 до 10 см двигалось тело 3.
- 5) Тела 1 и 3 проходят одинаковые участки пути за одинаковое время.

Ответ.

(15)

На границе воздух-стекло световой луч частично отражается, частично преломляется (см. рисунок).

Угол отражения примерно равен

- 1) 20°
- 2) 40°
- $3) 50^{\circ}$
- 4) 70°

Ответ.

16)

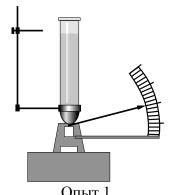
Установите соответствие между научными открытиями и именами учёных, которым эти открытия принадлежат. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

НАУЧНЫЕ ОТКРЫТИЯ

- А) маятниковые часы
- Б) ртутный барометр

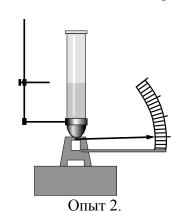
УЧЁНЫЕ

- 1) Х. Гюйгенс
- 2) И. Кеплер
- 3) Б. Паскаль
- 4) Е. Торричелли

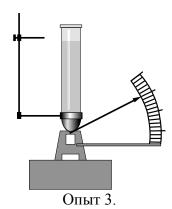

Ответ:

A	Б

(17)


Учитель провёл опыты с прибором, предложенным Паскалем. В сосуды, дно которых имеет одинаковую площадь и затянуто одинаковой резиновой плёнкой, наливается жидкость. Дно сосудов при этом прогибается, и его движение передаётся стрелке. Отклонение стрелки характеризует силу, с которой жидкость давит на дно сосуда.

Описание действий учителя и наблюдаемые показания прибора представлены на рисунке.



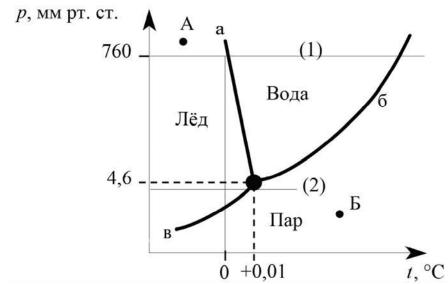
Опыт 1. В сосуд наливают жидкость 1. Высота столба жидкости

равна h_1 .

В сосуд наливают жидкость 1. Высота столба жидкости $h_2 < h_1$.

В сосуд наливают жидкость 2. Высота столба жидкости равна h_1 .

Из предложенного перечня выберите ∂sa утверждения, соответствующих проведённым опытам. Укажите их номера.


- 1) При увеличении высоты столба жидкости сила давления на дно сосуда увеличивается.
- 2) Сила давления жидкости принимает максимальное значение в опыте 3.
- 3) Сила давления жидкости на дно сосуда не зависит от рода жидкости.
- 4) Сила давления жидкости на дно сосуда не зависит от формы сосуда.
- 5) Сила давления жидкости на дно сосуда зависит от площади дна сосуда.

Прочитайте текст и выполните задания 18 и 19.

Тройная точка

Можно создать условия, при которых пар, жидкость и твёрдое состояние могут попарно сосуществовать, находясь в равновесии. Могут ли находиться в равновесии сразу все три состояния? Такая точка на диаграмме «давление – температура» существует. Её называют тройной точкой.

Если поместить в закрытый сосуд, в котором создан вакуум, при 0°C воду с плавающим льдом, то в свободное пространство начнут поступать водяные (и «ледяные») пары.

При давлении 4,6 мм рт. ст. наступит состояние динамического равновесия, когда количество испарившихся воды и газа равно количеству сконденсировавшегося за это же время пара. Теперь три фазы – лёд, вода и пар – будут в состоянии равновесия. Эта точка и есть тройная.

Соотношения между различными состояниями наглядно показывает диаграмма состояния для воды, изображённая на рисунке.

Кривые на рисунке – это линии термодинамического (теплового) равновесия между льдом и паром (кривая «в»), льдом и водой (кривая «а»), водой и паром (кривая «б»). По вертикали, как обычно, откладывается давление, по горизонтали – температура.

Три кривые пересекаются в тройной точке и делят диаграмму на три области: «лёд», «вода» и «водяной пар».

Диаграмма состояния позволяет дать ответ на вопрос, какое агрегатное состояние вещества достигается в равновесии при определённом давлении и определённой температуре.

Если в условия, соответствующие области «лёд» на графике, поместить воду или пар, то они станут льдом. Если для жидкости или твёрдого тела создать условия, соответствующие области «пар», то получится пар, а условия области «вода» приведут к тому, что пар будет конденсироваться, а лёд – плавиться.

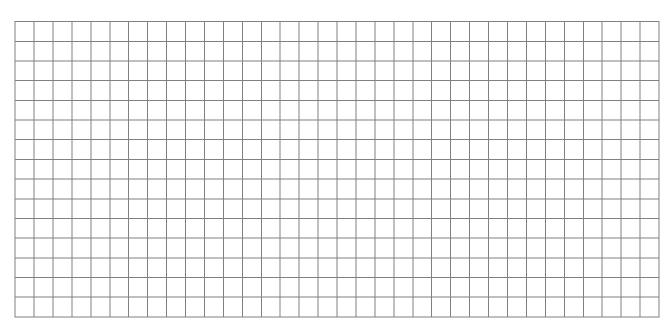
Диаграмма существования фаз позволяет сразу же ответить на вопрос, что произойдёт с веществом при нагревании или сжатии.

На рисунке изображены две такие линии, одна из них (линия 1) – это нагревание при нормальном давлении. Линия лежит выше тройной точки. Поэтому она пересечёт сначала кривую плавления, а затем и кривую испарения. Лёд при нормальном давлении расплавится при температуре 0 °C, а образовавшаяся вода закипит при 100 °C.

КОД	
-----	--

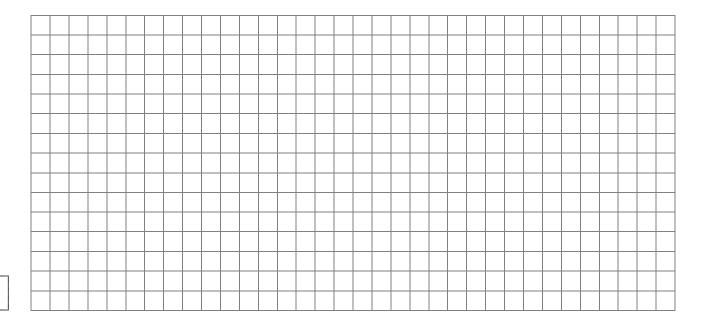
Иначе будет обстоять дело для льда, нагреваемого при очень небольшом давлении, скажем, чуть ниже 4,6 мм рт. ст. Процесс нагревания изобразится линией 2, идущей ниже тройной точки. Кривые плавления и кипения не пересекаются этой линией. При таком незначительном давлении нагревание приведёт к непосредственному переходу льда в пар.

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.


- Тройная точка воды соответствует давлению 4,6 Па. 1)
- Тройной точкой воды называют такие значения температуры и давления, при которых 2) находятся в равновесии все три агрегатных состояния воды.
- Пар, находящийся в состоянии, соответствующем точке Б на диаграмме, можно перевести в воду, не меняя температуры.
- Из состояния, соответствующего точке А на диаграмме, нельзя лёд перевести в пар, минуя жидкое состояние воды.

	5)	П	ри	ЛЮ	обо	йт	ем	пер	рат	ype	е па	ap 1	все	гда	а м	жо	НО	пеј	рев	ест	ги і	3 B(оду	у ся	кат	ие	M.						
	От	вет																															
19	Ка	кая	і(-и	ıe)	ЛИІ	ния	I(-V	и) н	іа д	циа	гра	ıMN	іе х	кар	акт	rep	изу	ет((-ю	т) 1	про	оце	cc	пла	авл	ен	ия'!	? O	тве	тп	ROI	сни	те
		акая(-ие) линия(-и) на диаграмме характеризует(-ют) процесс плавления? Ответ поясните.																															
																															L		
																															L		
																															L		
																															_		
																															L	\vdash	
																															\vdash	H	
<u>-</u>																															H		
		_				_		_	_	_	_	_	_	_		_								_	_	_	_		<u> </u>	<u> </u>	<u> </u>	\vdash	

КОД


(20)

В ванну с водой в одном случае помещают полено из сосны (плотность сосны 400 кг/м^3), а во втором случае полено из дуба такой же массы (плотность дуба 700 кг/м^3). Сравните уровень воды в ванне в первом и втором случае. Ответ поясните. В обоих случаях вода из ванны не переливалась через край.

21

Стёкла окон дома или его стены в лучах солнечного света кажутся более тёмными? Ответ поясните.

