ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ФИЗИКА

11 КЛАСС

Вариант 1

Инструкция по выполнению работы

Проверочная работа включает в себя 18 заданий. На выполнение работы по физике отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать калькулятор и линейку.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	:	2	3	4	5	6	7	8	9	10	11		14		18	оаллов	Отметка за работу
Баллы																	

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	109	санти	С	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	MK	10^{-6}
гекто	Γ	10^{2}	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kr}^2$
универсальная газовая постоянная	$R = 8.31 \; \text{Дж/(моль·К)}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \pi^2$
модуль заряда электрона	1 < 10-19 K
(элементарный электрический заряд)	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
постоянная Планка	$h = 6.6 \cdot 10^{-34}$ Дж·с

		`
(1	-)
\	1	- /

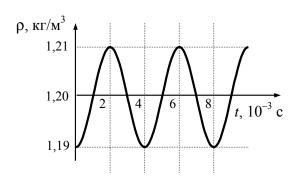
Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:

напряжение, атом, индуктивность, молекула, энергия, электрон.

Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

Название группы понятий	Перечень понятий

(2)


Выберите два верных утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.

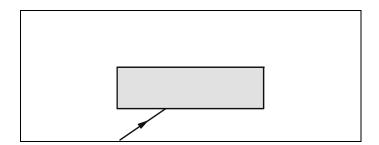
- 1) В любых системах отсчёта все механические процессы протекают одинаково.
- 2) Скорость диффузии в жидкости растёт с ростом температуры.
- 3) В цепи постоянного тока отношение напряжений на концах параллельно соединённых резисторов равно отношению их сопротивлений.
- 4) Электромагнитные волны ультрафиолетового диапазона имеют большую длину волны, чем радиоволны.
- 5) Ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов.

Ответ:

3

На рисунке показан график зависимости плотности воздуха в звуковой волне от времени. Какова амплитуда колебаний плотности воздуха?

Ответ

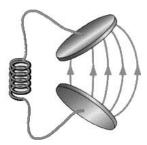

4

В калориметр с холодной водой температурой 15 °C погрузили медный цилиндр, нагретый до температуры 60 °C. В результате в калориметре установилась температура 30 °C. Затем вместо медного цилиндра в калориметр с той же массой холодной воды той же температуры погрузили цинковый цилиндр такой же массы, нагретый до температуры 60 °C. Удельная теплоёмкость меди равна удельной теплоёмкости цинка. Какая температура установится в калориметре с цинковым цилиндром (выше, ниже или равная 30 °C)?

Ответ:

5

Из воздуха на стеклянную плоскопараллельную пластину падает луч света (см. рисунок, вид сбоку). Изобразите примерный ход луча в пластине и после выхода света из стекла в воздух.



6

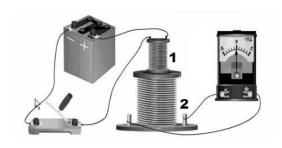
Какая частица X участвует в ядерной реакции ${}^{19}_{9}$ F + X $\longrightarrow {}^{4}_{2}$ He + ${}^{16}_{8}$ O?

- Ответ:_______.
- (7)

В колебательном контуре раздвинули пластины конденсатора.

Как при этом изменятся электроёмкость конденсатора и период собственных колебаний контура?

Для каждой величины определите соответствующий характер изменения:


- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Электроёмкость конденсатора	Период колебаний контура

8

В катушку 2, замкнутую на гальванометр, вносят нижний торец катушки 1, подключённой к источнику тока (рис. 1). При движении катушки 1 в катушке 2 наблюдают возникновение индукционного тока, который фиксируется гальванометром. Изменяя направление и скорость движения катушки 1, получают график зависимости индукционного тока в катушке 2 от времени (рис. 2).

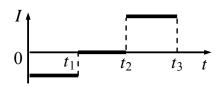
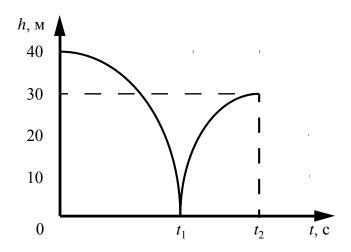


Рис.1

Рис. 2

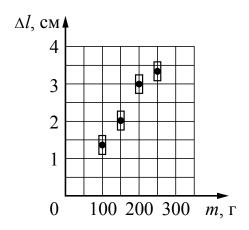

Выберите два верных утверждения, соответствующих данным графика. Запишите в ответе их номера.

- 1) В промежутке времени от t_1 до t_2 катушка 1 движется относительно катушки 2 равноускоренно.
- 2) В промежутке времени от 0 до t_1 катушка 1 движется относительно катушки 2 равномерно.
- 3) В промежутке времени от t_2 до t_3 из катушки 2 выдвигают катушку 1.
- 4) В промежутке времени от t_2 до t_3 катушка 1 движется относительно катушки 2 с меньшей скоростью, чем в промежутке от 0 до t_1
- 5) В промежутке времени от t_2 до t_3 катушку 1 вносят в катушку 2 нижним торцом.

Ответ

9

Мячик массой 200 г из состояния покоя падает вертикально с отвесной скалы высотой 40 м, отскакивает от земли и поднимается вертикально вверх на высоту 30 м. На рисунке представлен график зависимости положения (высоты h относительно поверхности Земли) мяча от времени в ходе этого движения.

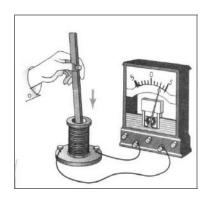

Как изменилась полная механическая энергия мяча за время удара о землю? Запишите решение и ответ. Сопротивлением воздуха пренебречь.

Решение:____

Отрат

(10)

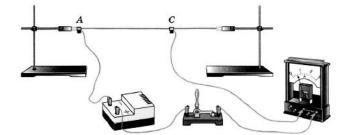
Ученик исследовал зависимость удлинения пружины от массы груза, подвешенного к пружине. Груз неподвижен. Погрешность измерения длины пружины равна 0.25 см, а массы тела -5 г. Результаты измерений с учётом их погрешности представлены на графике.


Каков приблизительно коэффициент упругости пружины?

Отве

Ответ: _____ Н/м.

(11)


К катушке индуктивности присоединили амперметр. При внесении в катушку постоянного магнита амперметр показал возникновение электрического тока в цепи катушки (см. рисунок).

 С какой целью был проведён данный опыт?
Ответ:

Вам необходимо продемонстрировать, что электрическое сопротивление проводника зависит от площади его поперечного сечения. Имеется следующее оборудование (см. рисунок):

- источник тока;
- амперметр;
- ключ;
- соединительные провода;
- штативы для закрепления проводника и скользящие контакты, при помощи которых можно изменять длину проводника, включённого в электрическую цепь;
- набор из пяти проводников одинаковой длины (100 см), характеристики приведены в таблице.

Таблииа

Номер	Длина	Площадь поперечного	Материал, из которого
проводника	проводника	сечения проводника	изготовлен проводник
1	100 см	1,5 мм ²	нихром
2	100 см	1,2 mm ²	медь
3	100 см	0.5 mm^2	сталь
4	100 см	0.8 mm^2	медь
5	100 см	0.5 mm^2	медь

В ответе:

- 1. Зарисуйте схему электрической цепи. Укажите номера используемых проводников (см. таблицу).
- 2. Опишите порядок действий при проведении исследования.

Ответ:				

(13)

Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе принципа их действия. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА

- A) ванна для получения чистых металлов путем электролиза
- Б) электрический кипятильник

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

- 1) взаимодействие постоянных магнитов
- 2) действие магнитного поля на проводник с током
- 3) тепловое действие тока
- 4) химическое действие тока

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

Α	Б

Прочитайте текст и выполните задания 14 и 15.

Термоэлементы

Рассмотрим цепь, составленную из проводников, изготовленных из разных металлов (см. рисунок). Если места спаев металлов находятся при одинаковой температуре, то ток в цепи не наблюдается. Если один из спаев нагреть, то в этом случае гальванометр показывает наличие в цепи электрического тока, протекающего всё время, пока существует разность температур между спаями a и b.

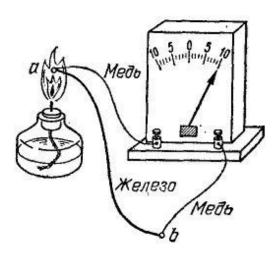


Рисунок. Цепь, состоящая из железного и двух медных проводников и гальванометра

Значение силы тока, протекающего в цепи, приблизительно пропорционально разности температур спаев. Направление тока зависит от того, какой из спаев находится при более высокой температуре.

Описанное явление было открыто в 1821 г. немецким физиком Зеебеком и получило название «термоэлектрический эффект», а всякую комбинацию проводников из разных металлов, образующую замкнутую цепь, называют термоэлементом.

Важным применением металлических термоэлементов является их использование для измерения температуры. Термоэлементы, используемые для измерения температуры (так называемые термопары), в отличие от обычных жидкостных термометров, обладают рядом преимуществ: термопары можно использовать для измерения как очень высоких (до $2000\,^{\circ}$ C), так и очень низких (единицы кельвин) температур; кроме того, термопары дают высокую точность измерения температуры и быстро реагируют на изменение температуры.

(14)	Почему по сравнению с жидкостным термометром термопару можно использовать для измерения более высокой температуры?
	Ответ:
<u>(15)</u>	Верно ли утверждение: «При увеличении разности температур спаев в термоэлементе в 2 раза возникающая разность потенциалов увеличивается примерно в 4 раза»? Ответ поясните.
	Ответ:

Прочитайте текст и выполните задания 16, 17 и 18.

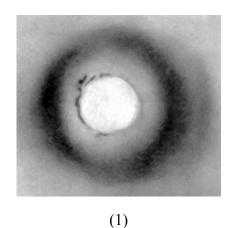
Рентгеновские лучи

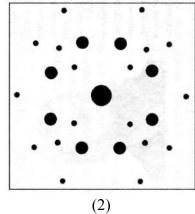
Рентгеновское излучение — это электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением.

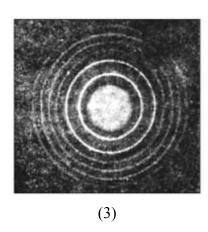
Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода (например, в газоразрядной трубке низкого давления). Часть энергии, не рассеивающаяся в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи).

Есть два типа рентгеновского излучения: тормозное и характеристическое. Тормозное рентгеновское излучение не является монохроматическим, оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, выбивает электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий.


Монохроматическое рентгеновское излучение, длины волн которого сопоставимы с размерами атомов, широко используется для исследования структуры веществ. В основе данного метода лежит явление дифракции рентгеновских лучей на трёхмерной кристаллической решётке. Дифракция рентгеновских лучей на монокристаллах была открыта в 1912 г. М. Лауэ. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, он наблюдал на помещённой за кристаллом пластинке дифракционную картину, которая состояла из большого количества расположенных в определённом порядке пятен.


Дифракционная картина, получаемая от поликристаллического материала (например, металлов), представляет собой набор чётко обозначенных колец. От аморфных материалов (или жидкостей) получают дифракционную картину с размытыми кольцами.


(16)	Какой из типов рентгеновского излучения имеет непрерывный спектр?
	Ответ:

/		$\overline{}$	
/	1	7	١
(1	/)
\			/
`		_	•

На рисунках представлены дифракционные картины, полученные на монокристалле, металлической фольге и воде. Какая из картин соответствует дифракции на металле?

: Отве	

_		$\overline{}$	
-/-	1	O	١
(ı	X)
\	_	_	1
`	_	_	′
	_	_	

Меняется ли, и если меняется, то как максимальная частота излучения при торможении электронов на аноде газоразрядной трубки, если увеличить напряжение между катодом и анодом? Ответ поясните.

Ответ:				
		•		
	•	•		•