Проверочная работа по ХИМИИ

8 класс

Вариант 1

Инструкция по выполнению работы

Проверочная работа включает в себя девять заданий. На её выполнение отводится 90 минут.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости кислот, солей и оснований в воде;
- ряд активности металлов / электрохимический ряд напряжений;
- непрограммируемый калькулятор.

Оформляйте ответы в тексте работы в соответствии с инструкциями, приведёнными к каждому заданию. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Заполняется учителем, экспертом или техническим специалистом

Обратите внимание: в случае, если какие-либо задания не могли быть выполнены целым классом по причинам, связанным с отсутствием соответствующей темы в реализуемой школой образовательной программе, в форме сбора результатов ВПР всем обучающимся класса за данное задание вместо балла выставляется значение «Тема не пройдена». В соответствующие ячейки таблицы заполняется н/п.

Таблица для внесения баллов участника

Номер задания	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	4.3	4.4	5.1	5.2	6.1	6.2	6.3	6.4	6.5
Баллы																	

Номер задания	7.1	7.2	7.3 (1)	7.3 (2)	8	9	Сумма баллов	Отметка за работу
Баллы								

Периодическая система химических элементов Д.И. Менделеева

							руппы	Ы				
		1	II	III	IV	Λ	IA	IIA		^	ΛIII	
		1						11.5				2
	-	Т 1,008 Водород						Î)				ПС 4,00 Гелий
_		3	4	5	9	7	8	6				10
=	7	Li 6,94	Be 9,01	10,81 B	12,01 C	1 4,00 N	16,00 O	19,00 F				Ne 20,18
•		Литий	Бериллий	Pop	Углерод	Азот	Кислород	Фтор				Неон
Ð		11	12	13	14	15	16	17				18
,	ო	Na 22,99	Mg 24,31	26,98 AI	28,09 Si	30,97 P	32,06 S	35,45 CI				Ar 39,95
۵_		Натрий	Мапний	Алюминий	Кремний	Фосфор	Cepa	Хлор				Аргон
		19	20	21	22	23	24	25	56	27	28	
z	4	K 39,10	Ca 40,08	Sc 44,96	Ti 47,90	V 50,94	Cr 52,00	Mn 54,94	Fe 55,85	Co 58,93	Ni 58,69	
		Калий	Кальций	Скандий	Титан	Ванадий	Хром	Марганец	Железо	Кобальт	Никель	
0		58	30	31	32	33	34	35				36
		63,55 Cu	65,39 Zn	69,72 Ga	72,59 Ge	74,92 AS	78,96 Se	79,90 Br				Kr 83,80
П		Медь	Цинк	Галлий	Германий	Мышьяк	Селен	Бром				Криптон
[37	38	68	40	41	42	43	44	45	46	
1	2	Rb 85,47	Sr 87,62	Y 88,91	Zr 91,22	Nb 92,91	Mo 95,94	TC 98,91	Ru 101,07	Rh 102,91	Pd 106,42	
5		Рубидий	Стронций	Иттрий	Цирконий	Ниобий	Молибден	Технеций	Рутений	Родий	Палладий	
		47	48	49	20	51	25	53				54
		107,87 Ag	112,41 Cd	114,82 In	118,69 Sn	121,75 Sb	127,60 Te	126,90				Xe 131,29
		Cepeбpo	Кадмий	Индий	Олово	Сурьма	Теллур	Иод				Ксенон
		22	99	22	72	73	74	75	9/	77	78	
	9	CS 132,91	Ba 137,33	La * 138,91	Hf 178,49	Ta 180,95	W 183,85	Re 186,21	OS 190,2	lr 192,22	Pt 195,08	
		Цезий	Барий	Лантан	Гафний	Тантал	Вольфрам	Рений	Осмий	Иридий	Платина	
		79	80	81	82	83	84	85				98
		196,97 Au	200,59 Hg	204,38 TI	207,2 Pb	208,98 Bi	[209] Po	[210] At				Rn [222]
		Золото	Ртуть	Таллий	Свинец	Висмут	Полоний	Астат				Радон
		87	88	89	104	105	106	107	108	109	110	
	7	Fr [223]	Ra 226	AC ** [227]	Rf [261]	Db [262]	Sg [266]	Bh [264]	HS [269]	Mt [268]	DS [271]	
		Франций	Радий	Актиний	Резерфордий	Дубний	Сиборгий	Борий	Хассий	Мейтнерий	Дармштадтий	
		111	112	113	114	115	116	117				118
		[280] Rg	[285] Cn	[286] Nh	[289] FI	[290] MC	[293] LV	[294] TS				Og [294]
		Рентгений	Коперниций	Нихоний	Флеровий	Московий	Ливерморий	Теннесий				Оганесон
							!					

* Лантаноиды

							**						
Лютеций	Иттербий	Тулий	Эрбий	Гольмий	Диспрозий	Тербий	Гадолиний	Европий	Самарий	Прометий	Неодим	Празеодим	Церий
Lu 175	Yb 173	Tm 169	Er 167	Ho 165	Dy 162,5	Tb 159	Eu 152 Gd 157	Eu 152	Sm 150	Pm [145]	Nd 144	Pr 141	Ce 140
71	70	69	89	29	99	65	64	63	62	61	09	29	28

Th 232Ра 231U 238Np 237Pu [244]Am [243]Cm[247]Bk(247]Cf[251]ES [252]Fm[257]Md[258]NO [259]ТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделеевийНобелий							AKIN	пОИДБІ						
Ра 231 U 238 Np 237 Pu [244] Am [243] Cm[247] Bk[247] Bk[247] Cf[251] ES [252] Fm[257] Md[258] Nd Протактиний Уран Нептуний Америций Корий Корклий Зйнштейний Фермий Менделеевий Не	06	91	92	93	94	92	96	26	86	66	100	101	102	103
й Берклий Калифорний Эйнштейний Фермий Менделеевий	Th 232	Pa 231	U 238	Np 237	Pu [244]	Am [243]	Cm [247]	$\mathbf{BK}_{[247]}$	Cf [251]	ш	_	Š	No [259]	Lr [262]
	Торий	Протактиний	Уран	Нептуний	Плутоний	Америций	Кюрий	Берклий	Калифорний	ўНИЙ	Фермий	Менделеевий	Нобелий	Лоуренсий

Sn Pb (H) Sb Bi Cu Hg Ag Pt Au РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni

активность металлов уменьшается

РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ	РИМ	OCT	Ь КИ	СЛО	r, coj	ІЕЙ И	OCH	OBAH	ИЙВ	воде	E											
	ţ	⁺⊐	¥	Na	NH ₄ +	Ba ²⁺	Ca²⁺	Mg ²⁺	Sr ²⁺	ΑΙ³÷	င်္န	Fe ²⁺	Fe ³	Ni ²⁺	Co ²⁺	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb^{2+}	Sn ²⁺	Cu ²⁺
_HO		Ь	Ь	Ь	Ь	Ь	M	Н	Σ	Н	Н	Н	Н	Н	Н	Н	Н	I	1	Н	Н	Η
L	Ь	M	Ь	Ь	Ь	M	Н	Н	Н	M	Н	Н	Н	Ь	Ь	Ь	Ь	Ь	ı	Н	Ь	Ь
_I	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Н	Ь	M	Ь	Ь
Br ⁻	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Н	М	M	Ь	Ь
┙	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	ċ	Ь	i	Ь	Ь	Ь	Ь	Н	Н	Н	M	i
\mathbf{S}^{2-}	Ь	Ь	Ь	Ь	Ь	I	I	ı	Н	I	ı	Н	I	Н	Н	Н	Н	Н	Н	Н	Н	Н
HS_	Ъ	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	ċ	ċ	ċ	i	i	Н	i	ċ	i	ċ	ċ	i	i
$\mathbf{SO_3}^{2-}$	Ь	Ь	Ь	Ь	Ь	Н	Н	M	Н	i	ı	Н	i	Н	Н	ċ	M	Н	Н	Н	ċ	i
HSO ₃ -	Ь	i	Ь	Ь	Ь	Ь	Ь	Ь	Ь	i	ċ	ċ	i	ċ	ċ	ċ	ċ	ć	ċ	ċ	ċ	ć
$\mathbf{SO_4}^{2-}$	Ь	Ь	Ь	Ь	Ь	Н	M	Ь	Н	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	M	ı	Н	Ь	Ь
HSO⁴⁻	Ь	Ь	Ь	Ь	Ь	i	i	i	I	i	i	i	i	i	i	i	i	i	i	Η	i	i
NO ₃ -	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	I	Ь
NO_2^-	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	i	ċ	i	i	Ь	M	i	i	M	i	i	i	i
PO_4^{3-}	Ь	Η	Ь	Ь	Ι	Η	Η	Н	Η	Η	Н	Н	Н	Н	Η	Н	Н	Н	Н	Н	Η	Η
HPO ₄ ²⁻	P	i	P	P	Ь	Η	Η	M	Η	i	i	Н	i	i	i	Н	i	i	i	M	Η	i
H ₂ PO ₄ ⁻	P	Ь	Ь	Ь	Ь	P	Ь	Ь	Ь	ż	?	Ь	ż	?	?	Ь	Ь	Ь	?	-	ż	j
CO_3^{2-}	P	Ь	P	Ь	Ь	Η	Η	Η	Η	i	i	Н	_	Н	Η	Н	Η	Η	Н	Η	i	Η
HCO ₃ -	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	i	i	Ь	i	i	i	i	i	i	i	Ь	i	i
CH ₃ COO_	P	Ь	P	P	Ь	P	Ь	d	Ь	_	Ь	Ь	_	Ь	P	Ь	Ь	Ь	Ь	Ь	_	Ь
${ m SiO_3}^{2-}$	Η	Η	Ь	Ь	i	Η	Η	Н	Η	i	ċ	Н	i	ċ	i	Н	Н	i	i	Н	i	i
"			4	+	11	ć																

"Р" – растворяется (> 1 г на 100 г H_2O)

"М" – мало растворяется (от 0,1 г до 1 г на 100 г $_2$ О)

"Н" – не растворяется (меньше 0,01 г на 1000 г воды)

"-" – в водной среде разлагается

"?" – нет достоверных сведений о существовании соединений

Напишите номер выбранного процесса:

1		и являются вещества. оите предложенные рисунки. Укажит ащий индивидуальное химическое вег	
	Puc. 1	Puc. 2	МЕЛКИ ЦВЕТНЫЕ Рис. 3
	Индивидуальное химическ		i nc. 3
	содержится в объекте, изоб		
	Приведите по ОДНОМУ пр	ержатся в объектах, изображённы римеру. ките его химическое название и форм	
	Рис. 1:	(название)	(формула).
	Рис. 2:	(название)	(формула).
	Рис. 3:	(название)	(формула).
2		тв в другие называется химической ро риведённых ниже процессов протекае	
	1 1	поднимается вверх. эмпературы плавления лёд тает. Ухе древесина обугливается.	-

Объясните сделанный Вами выбор:

2.2. Укажите один ЛЮБОЙ признак протекания этой химической реакции:

КОД	
r 1	

(3)

В таблице приведены названия и химические формулы некоторых газообразных веществ.

Nº	Название	Формула	Молярная масса, г/моль
1	Аммиак	NH ₃	
2	Фтор	F ₂	
3	Озон	O_3	

3.1.	Использ	уя	предложенные	Вам	спра	вочные	матери	алы,	вычис	лите м	иол:	ярные	массы
кажд	дого из га	азов	в и заполните пу	устые	клетн	ки этой	таблицы	[.					
3 2	Karum	כנד	прираданных	ь таб	пипа	FOROR	спаниат	папо	пиит	шарии		практ	шаски

3.2.	Каким	ИЗ	приведённых	В	таблице	газов	следует	наполнить	шарик	c	практически
неве	сомой с	бол	очкой, чтобы	ОН	оказался	легче і	воздуха и	смог взлето	еть? (Ср	еді	няя молярная
масс	а возду	xa p	авна 29 г/моль	.) \	Укажите н	юмер в	вещества.				

Ответ:	
Объясните свой выбор:	

(4)	Даны два	химических онов, а в атоме	элемента:	Aı	Б .	Известно,	что 1	в атоме	элемента	A	содержится
•	20 электро	нов, а в атом	е элемента	B – 1	на 4	электрона м	иеньш	e.			

- 4.1. Используя Периодическую систему химических элементов Д.И. Менделеева, определите химические элементы $\bf A$ и $\bf B$.
- 4.2. Укажите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен каждый элемент.
- 4.3. Установите, металлом или неметаллом являются простые вещества, образованные этими химическими элементами.
- 4.4. Составьте формулы высших оксидов, которые образуют элементы А и Б.

Ответы запишите в таблицу.

Dravava	Название	Но	мер	Металл	Формула высшего оксида	
Элемент	химического элемента	периода	группы	или неметалл		
A						
Б						

КОД

5

Восьмиклассница Оля съела за обедом 2 морковные котлеты массой 100 г каждая.

5.1. Используя данные приведённой ниже таблицы, определите, какую массу углеводов получил при этом организм девушки. Ответ подтвердите расчётом.

Содержание углеводов в некоторых овощных блюдах

Блюдо	Морковь	Капуста	Картофель	Морковные	Картофель
	отварная	тушёная	отварной	котлеты	жареный
Массовая доля углеводов, %	5,9	9,6	16,7	20,6	23,4

Решение:
Ответ:
5.2. Какую долю суточной физиологической нормы (400 г) составляет потреблённое Олей количество углеводов? Ответ подтвердите расчётом.
Решение:
Ответ.

6.1. Напишите химические формул	•				
Алюминий – Вода –	Водород –				
Хлороводород –	Хлорид алюминия –				
Гидроксид железа(III) –	Оксид железа(III) –				
	емых в перечне, соответствует следующему описанию риятным запахом, легко растворяющийся в воде о				
Ответ:	Ответ:				
химическую формулу этого вещест	ЛЮБОЕ вещество, содержащее атомы железа. Запишито ва. Укажите, к какому классу неорганических соединений потные, основные или амфотерные) проявляет.				
химическую формулу этого вещестоно относится, какие свойства (кис.	ва. Укажите, к какому классу неорганических соединений лотные, основные или амфотерные) проявляет.				
химическую формулу этого вещестоно относится, какие свойства (кис. Вещество — 6.4. В приведённом перечне веществ	ва. Укажите, к какому классу неорганических соединений лотные, основные или амфотерные) проявляет. Класс соединений — в найдите соединение, состоящее из атомов ТРЁХ элементов				
химическую формулу этого вещестоно относится, какие свойства (кис. Вещество — 6.4. В приведённом перечне веществ Вычислите массовую долю кислоро	ва. Укажите, к какому классу неорганических соединений лотные, основные или амфотерные) проявляет. Класс соединений — в найдите соединение, состоящее из атомов ТРЁХ элементов ода в этом соединении.				
химическую формулу этого вещестоно относится, какие свойства (кис. Вещество —	ва. Укажите, к какому классу неорганических соединений лотные, основные или амфотерные) проявляет. Класс соединений — найдите соединение, состоящее из атомов ТРЁХ элементов ода в этом соединении.				
химическую формулу этого вещест оно относится, какие свойства (кис. Вещество –	гва. Укажите, к какому классу неорганических соединений лотные, основные или амфотерные) проявляет. Класс соединений — в найдите соединение, состоящее из атомов ТРЁХ элементов ода в этом соединении.				
химическую формулу этого вещестоно относится, какие свойства (кис. Вещество —	гва. Укажите, к какому классу неорганических соединений лотные, основные или амфотерные) проявляет Класс соединений — в найдите соединение, состоящее из атомов ТРЁХ элементов ода в этом соединении				

КОД	

6	Ниже даны описания двух химических превращений с участием веществ, перечень которых был приведён в задании 6: (1) алюминий + хлороводород (p-p) → хлорид алюминия + водород; (2) гидроксид железа(III) → оксид железа(III) + вода.					
,	7.1. Составьте уравнения указанных реакций, используя химические формулы веществ из п. 6.1.					
([1]					
	2)					
Į	7.2. В зависимости от числа и состава веществ, вступающих в химическую реакцию образующихся в результате неё, различают реакции соединения, разложения, замещения обмена. Выберите любую реакцию (1) или (2) и укажите её тип.					
ŀ	Реакция:					
7	Гип –					
(Объясните свой ответ:					
,	7.3. Из приборов, изображённых на рисунках, выберите тот, с помощью которого можно					
	7.3. из приооров, изоораженных на рисунках, выоерите тот, с помощью которого можно получить газообразный водород по реакции (1).					
	Рис. 1 Рис. 2					
ŀ	Водород можно получить с помощью прибора, изображённого на рисунке:					
	Каким методом – вытеснения воды или вытеснения воздуха – получают водород в этом приборе?					
(Ответ: методом вытеснения					
	Почему прибор, изображённый на другом рисунке, не может быть использован для получения водорода?					

(8)

Установите соответствие между названием химического вещества и областью его применения. К каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

НАЗВАНИЕ ВЕЩЕСТВА

ОБЛАСТЬ ПРИМЕНЕНИЯ

- А) алюминий
- Б) хлор
- В) сульфат бария
- Г) серная кислота

- 1) жидкость для тушения пожаров
- 2) в авиации в составе лёгких сплавов
- 3) электролит в автомобильных аккумуляторах
- 4) для обеззараживания воды в бассейнах
- 5) белый пигмент в красках и пластмассах

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б	В	Γ
Ответ:				

Из приведённого списка выберите верные суждения о правилах поведения в химической лаборатории и обращения с химическими веществами в быту. В ответе запишите цифры, под которыми они указаны. (В задании может быть несколько верных суждений.)

- 1) Производство цемента и других строительных материалов относится к источникам загрязнения атмосферы.
- 2) Наиболее ядовитые компоненты выхлопных газов автомобилей углекислый газ и пары воды.
- 3) Чтобы нагреть жидкость в пробирке, её держат рукой над спиртовкой.
- 4) Остатки кислот и щелочей после окончания опыта сливают в специальные склянки.

	Ответ: _	
--	----------	--