Проверочная работа по ХИМИИ

8 класс

Вариант 1

Инструкция по выполнению работы

Проверочная работа включает в себя девять заданий. На её выполнение отводится 90 минут.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости кислот, солей и оснований в воде;
- ряд активности металлов / электрохимический ряд напряжений;
- непрограммируемый калькулятор.

Оформляйте ответы в тексте работы в соответствии с инструкциями, приведёнными к каждому заданию. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Заполняется учителем, экспертом или техническим специалистом

Обратите внимание: в случае, если какие-либо задания не могли быть выполнены целым классом по причинам, связанным с отсутствием соответствующей темы в реализуемой школой образовательной программе, в форме сбора результатов ВПР всем обучающимся класса за данное задание вместо балла выставляется значение «Тема не пройдена». В соответствующие ячейки таблицы заполняется н/п.

Таблица для внесения баллов участника

Номер задания	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	4.3	4.4	5.1	5.2	6.1	6.2	6.3	6.4	6.5
Баллы																	

Номер задания	7.1	7.2	7.3 (1)	7.3 (2)	8	9	Сумма баллов	Отметка за работу
Баллы								

Периодическая система химических элементов Д.И. Менделеева

							руппы	Ы				
		1	II	III	IV	Λ	IA	IIA		^	ΛIII	
		1						11.5				2
	-	Т 1,008 Водород						Î)				ПС 4,00 Гелий
_		3	4	5	9	7	8	6				10
=	7	Li 6,94	Be 9,01	10,81 B	12,01 C	1 4,00 N	16,00 O	19,00 F				Ne 20,18
•		Литий	Бериллий	Pop	Углерод	Азот	Кислород	Фтор				Неон
Ð		11	12	13	14	15	16	17				18
,	ო	Na 22,99	Mg 24,31	26,98 AI	28,09 Si	30,97 P	32,06 S	35,45 CI				Ar 39,95
۵_		Натрий	Мапний	Алюминий	Кремний	Фосфор	Cepa	Хлор				Аргон
		19	20	21	22	23	24	25	56	27	28	
z	4	K 39,10	Ca 40,08	Sc 44,96	Ti 47,90	V 50,94	Cr 52,00	Mn 54,94	Fe 55,85	Co 58,93	Ni 58,69	
		Калий	Кальций	Скандий	Титан	Ванадий	Хром	Марганец	Железо	Кобальт	Никель	
0		58	30	31	32	33	34	35				36
		63,55 Cu	65,39 Zn	69,72 Ga	72,59 Ge	74,92 AS	78,96 Se	79,90 Br				Kr 83,80
П		Медь	Цинк	Галлий	Германий	Мышьяк	Селен	Бром				Криптон
[37	38	68	40	41	42	43	44	45	46	
1	2	Rb 85,47	Sr 87,62	Y 88,91	Zr 91,22	Nb 92,91	Mo 95,94	TC 98,91	Ru 101,07	Rh 102,91	Pd 106,42	
5		Рубидий	Стронций	Иттрий	Цирконий	Ниобий	Молибден	Технеций	Рутений	Родий	Палладий	
		47	48	49	20	51	25	53				54
		107,87 Ag	112,41 Cd	114,82 In	118,69 Sn	121,75 Sb	127,60 Te	126,90				Xe 131,29
		Cepeбpo	Кадмий	Индий	Олово	Сурьма	Теллур	Иод				Ксенон
		22	99	22	72	73	74	75	9/	77	78	
	9	CS 132,91	Ba 137,33	La * 138,91	Hf 178,49	Ta 180,95	W 183,85	Re 186,21	OS 190,2	lr 192,22	Pt 195,08	
		Цезий	Барий	Лантан	Гафний	Тантал	Вольфрам	Рений	Осмий	Иридий	Платина	
		79	80	81	82	83	84	85				98
		196,97 Au	200,59 Hg	204,38 TI	207,2 Pb	208,98 Bi	[209] Po	[210] At				Rn [222]
		Золото	Ртуть	Таллий	Свинец	Висмут	Полоний	Астат				Радон
		87	88	89	104	105	106	107	108	109	110	
	7	Fr [223]	Ra 226	AC ** [227]	Rf [261]	Db [262]	Sg [266]	Bh [264]	HS [269]	Mt [268]	DS [271]	
		Франций	Радий	Актиний	Резерфордий	Дубний	Сиборгий	Борий	Хассий	Мейтнерий	Дармштадтий	
		111	112	113	114	115	116	117				118
		[280] Rg	[285] Cn	[286] Nh	[289] FI	[290] MC	[293] LV	[294] TS				Og [294]
		Рентгений	Коперниций	Нихоний	Флеровий	Московий	Ливерморий	Теннесий				Оганесон
							!					

* Лантаноиды

							**						
Лютеций	Иттербий	Тулий	Эрбий	Гольмий	Диспрозий	Тербий	Гадолиний	Европий	Самарий	Прометий	Неодим	Празеодим	Церий
Lu 175	Yb 173	Tm 169	Er 167	Ho 165	Dy 162,5	Tb 159	Eu 152 Gd 157	Eu 152	Sm 150	Pm [145]	Nd 144	Pr 141	Ce 140
71	70	69	89	29	99	65	64	63	62	61	09	29	28

Th 232Ра 231U 238Np 237Pu [244]Am [243]Cm[247]Bk(247]Cf[251]ES [252]Fm[257]Md[258]NO [259]ТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделеевийНобелий							AKIN	пОИДБІ						
Ра 231 U 238 Np 237 Pu [244] Am [243] Cm[247] Bk[247] Bk[247] Cf[251] ES [252] Fm[257] Md[258] Nd Протактиний Уран Нептуний Америций Корий Корклий Зйнштейний Фермий Менделеевий Не	06	91	92	93	94	92	96	26	86	66	100	101	102	103
й Берклий Калифорний Эйнштейний Фермий Менделеевий	Th 232	Pa 231	U 238	Np 237	Pu [244]	Am [243]	Cm [247]	$\mathbf{BK}_{[247]}$	Cf [251]	ш	_	Š	No [259]	Lr [262]
	Торий	Протактиний	Уран	Нептуний	Плутоний	Америций	Кюрий	Берклий	Калифорний	ўНИЙ	Фермий	Менделеевий	Нобелий	Лоуренсий

Sn Pb (H) Sb Bi Cu Hg Ag Pt Au РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni

активность металлов уменьшается

РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ	РИМ	OCT	Ь КИ	СЛО	r, coj	ІЕЙ И	OCH	OBAH	ИЙВ	воде	E											
	ţ	⁺⊐	¥	Na	NH ₄ +	Ba ²⁺	Ca²⁺	Mg ²⁺	Sr ²⁺	ΑΙ³÷	င်္န	Fe ²⁺	Fe ³	Ni ²⁺	Co ²⁺	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb^{2+}	Sn ²⁺	Cu ²⁺
_HO		Ь	Ь	Ь	Ь	Ь	M	Н	Σ	Н	Н	Н	Н	Н	Н	Н	Н	I	1	Н	Н	Η
L	Ь	M	Ь	Ь	Ь	M	Н	Н	Н	M	Н	Н	Н	Ь	Ь	Ь	Ь	Ь	ı	Н	Ь	Ь
_I	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Н	Ь	M	Ь	Ь
Br ⁻	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Н	М	M	Ь	Ь
┙	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	ċ	Ь	i	Ь	Ь	Ь	Ь	Н	Н	Н	M	i
\mathbf{S}^{2-}	Ь	Ь	Ь	Ь	Ь	I	I	ı	Н	I	ı	Н	I	Н	Н	Н	Н	Н	Н	Н	Н	Н
HS_	Ъ	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	ċ	ċ	ċ	i	i	Н	i	ċ	i	ċ	ċ	i	i
$\mathbf{SO_3}^{2-}$	Ь	Ь	Ь	Ь	Ь	Η	Н	M	Н	i	ı	Н	i	Н	Н	ċ	M	Н	Н	Н	ċ	i
HSO ₃ -	Ь	i	Ь	Ь	Ь	Ь	Ь	Ь	Ь	i	ċ	ċ	i	ċ	ċ	ċ	ċ	ć	ċ	ċ	ċ	ć
$\mathbf{SO_4}^{2-}$	Ь	Ь	Ь	Ь	Ь	Н	M	Ь	Н	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	M	ı	Н	Ь	Ь
HSO⁴⁻	Ь	Ь	Ь	Ь	Ь	i	i	i	I	i	i	i	i	i	i	i	i	i	i	Η	i	i
NO ₃ -	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	I	Ь
NO_2^-	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	i	ċ	i	i	Ь	M	i	i	M	i	i	i	i
PO_4^{3-}	Ь	Η	Ь	Ь	I	Η	Η	Н	Η	Η	Н	Н	Н	Н	Η	Н	Н	Н	Н	Н	Η	Η
HPO ₄ ²⁻	P	i	P	P	Ь	Η	Η	M	Η	i	i	Н	i	i	i	Н	i	i	i	M	Η	i
H ₂ PO ₄ ⁻	P	Ь	Ь	Ь	Ь	P	Ь	Ь	Ь	ż	?	Ь	ż	?	?	Ь	Ь	Ь	?	-	ż	j
CO_3^{2-}	P	Ь	P	Ь	Ь	Η	Η	Η	Η	i	i	Н	_	Н	Η	Н	Η	Η	Н	Η	i	Η
HCO ₃ -	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	i	i	Ь	i	i	i	i	i	i	i	Ь	i	i
CH ₃ COO_	P	Ь	P	P	Ь	P	Ь	d	Ь	_	Ь	Ь	_	Ь	P	Ь	Ь	Ь	Ь	Ь	_	Ь
${ m SiO_3}^{2-}$	Η	Η	Ь	Ь	i	Η	Η	Н	Η	i	ċ	Н	i	ċ	i	Н	Н	i	i	Н	i	i
"			4	+	11	ć																

"Р" – растворяется (> 1 г на 100 г H_2O)

"М" – мало растворяется (от 0,1 г до 1 г на 100 г $_2$ О)

"Н" – не растворяется (меньше 0,01 г на 1000 г воды)

"-" – в водной среде разлагается

"?" – нет достоверных сведений о существовании соединений

Напишите номер выбранного процесса:

КОД	

1		ивляются вещества. те предложенные рисунки. Укажите н ий индивидуальное химическое веще	
	РУБЛЕЙ 2009	Вода для инъекций	
	Рис. 1	Рис. 2	Рис. 3
	Индивидуальное химическое содержится в объекте, изобра		
	Приведите по ОДНОМУ при	ожатся в объектах, изображённых меру. те его химическое название и формул	
	Рис. 1:	(название)	(формула).
	Рис. 2:	(название)	(формула).
	Рис. 3:	(название)	(формула).
2		в другие называется химической реак з приведённых ниже процессов протек водопроводной воды.	
	÷ ,	абля, заполненного водородом.	

Объясните сделанный Вами выбор: _____

2.2. Укажите один ЛЮБОЙ признак протекания этой химической реакции:

КОД	
r 1	

В таблице приведены названия и химические формулы некоторых газообразных веществ.

№	Название вещества	Формула	Молярная масса, г/моль
1	Гелий	Не	
2	Аммиак	NH ₃	
3	Фосген	$COCl_2$	

3.1.	Используя	предложенные	Вам	справочные	материалы,	вычислите	молярные	массы
кажд	цого из газо	в и запишите пол	пучен	ные данные в	таблицу.			

3.2.	Какой	ИЗ	приведённых	В	таблице	газов	тяжелее	воздуха,	поэтом	у при	уте	чке	ИЗ
резе	рвуара	буд	ет стелиться г	10	земле? (С	Средняя	молярна	я масса	воздуха	равна	29 Γ	/мол	ь.)
Ука	жите но	мер	вещества.										

Ответ:
 Объясните свой выбор:

	Даны два химических элемента: А и Б. Известно, что в атоме элемента А содержится
\mathcal{I}	16 электронов, а в атоме элемента \mathbf{F} – на 4 электрона меньше.

- 4.1. Используя Периодическую систему химических элементов Д.И. Менделеева, определите химические элементы А и Б.
- 4.2. Укажите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен каждый элемент.
- 4.3. Установите, металлом или неметаллом являются простые вещества, образованные этими химическими элементами.
- 4.4. Составьте формулы высших оксидов, которые образуют элементы А и Б.

Ответы запишите в таблицу.

Duorona	Название	Номер		Металл	Формула
Элемент	химического элемента	периода	группы	или неметалл	высшего оксида
A					
Б					

КОД

(5)

Восьмиклассница Света съела за чаем кусочек слоёного торта массой 150 г.

5.1. Используя данные приведённой ниже таблицы, определите, какую массу жиров получил при этом организм девушки. Ответ подтвердите расчётом.

Содержание некоторых компонентов в слоёном торте

Компонент	Вода	Белки	Жиры	Углеводы
Массовая доля, %	13,0	5,0	37,4	44,0

Решение:
Ответ:
5.2. Какую долю суточной физиологической нормы (90 г) составляет потреблённое Светой количество жиров? Ответ подтвердите расчётом.
Решение:
Ответ:

6.1. Напишите химические формул	пы каждого из указанных веществ.
Цинк – Водород –	Хлороводород —
Хлорид цинка –	Гидроксид железа(III) –
Оксид железа(III) –	Вода –
	емых в перечне, соответствует следующему описантным запахом; при растворении в воде образует соля
Ответ:	<u> </u>
химическую формулу и укажит относится. Если Вы выбрали окс	ге, к какому классу неорганических соединений ид или гидроксид, укажите, какие свойства – кислот
химическую формулу и укажит относится. Если Вы выбрали окс осно́вные или амфотерные – это ве	ге, к какому классу неорганических соединений ид или гидроксид, укажите, какие свойства – кислот ещество проявляет.
химическую формулу и укажитотносится. Если Вы выбрали окслосно́вные или амфотерные — это ве Вещество — 6.4. Из приведённого перечня ве	•
химическую формулу и укажитотносится. Если Вы выбрали окслосновные или амфотерные — это ве Вещество — 6.4. Из приведённого перечня ве элементов. Вычислите массовую д	ге, к какому классу неорганических соединений ид или гидроксид, укажите, какие свойства – кислот ещество проявляет. Класс соединений –
химическую формулу и укажитотносится. Если Вы выбрали окслосновные или амфотерные — это ве Вещество — 6.4. Из приведённого перечня ве элементов. Вычислите массовую д Вещество —	ге, к какому классу неорганических соединений ид или гидроксид, укажите, какие свойства – кислот ещество проявляет. Класс соединений –
химическую формулу и укажитотносится. Если Вы выбрали окслосновные или амфотерные – это ве Вещество – 6.4. Из приведённого перечня ве	ге, к какому классу неорганических соединений ид или гидроксид, укажите, какие свойства – кислот ещество проявляет Класс соединений –
химическую формулу и укажитотносится. Если Вы выбрали окслосновные или амфотерные — это ве Вещество — 6.4. Из приведённого перечня ве элементов. Вычислите массовую д Вещество — Решение:	ге, к какому классу неорганических соединений ид или гидроксид, укажите, какие свойства – кислот ещество проявляет Класс соединений –

КОД	

был приведён в задании 6: (1) цинк + хлороводород (p-p) \rightarrow хлорид цинка + водород; (2) гидроксид железа(III) \rightarrow оксид железа(III) + вода.	рых
7.1. Составьте уравнения указанных реакций, используя химические формулы веществ из п. 6	5.1.
(1)	
(2)	
7.2. В зависимости от числа и состава веществ, вступающих в химическую реакт и образующихся в результате неё, различают реакции соединения, разложения, замеще и обмена. Выберите ЛЮБУЮ реакцию (1) или (2) и укажите её тип.	
Реакция:	
Тип –	
Объясните свой ответ:	
Рис. 1 Pис. 2	
Водород можно получить с помощью прибора, изображённого на рисунке:	
Каким методом – вытеснения воды или вытеснения воздуха – получают водород в э приборе?	том
Ответ: методом вытеснения	
Почему прибор, изображённый на другом рисунке, не может быть использован	
получения водорода? Объяснение:	для

_	
	КОД

(8)	
-----	--

Установите соответствие между названием химического вещества и областью его применения. К каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

НАЗВАНИЕ ВЕЩЕСТВА

ОБЛАСТЬ ПРИМЕНЕНИЯ

- А) магний
- Б) водород
- В) хлороводород (раствор)
- Г) вода

- 1) жидкость для тушения пожаров
- 2) газ для обеспечения дыхания водолазов
- 3) для травления металлических поверхностей
- 4) экологически чистое топливо
- 5) в авиации в составе лёгких сплавов

Запишите в таблицу выбранные цифры под соответствующими буквами.

	Α	Б
Ответ:		

Из приведённого списка выберите верные суждения о правилах поведения в химической лаборатории и обращения с химическими веществами в быту. В ответе запишите цифры, под которыми они указаны. (В задании может быть несколько верных суждений.)

- 1) При использовании препаратов бытовой химии соблюдение прилагаемых к ним инструкций необязательно.
- 2) Пламя спиртовки можно затушить, накрыв его колпачком.
- 3) Загрязнение воздуха оксидами серы вызывает образование кислотных дождей.
- 4) Отверстие пробирки при нагревании её на спиртовке должно быть направлено на экспериментатора.

Ответ:
